Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications.
نویسنده
چکیده
Substrate topography plays a vital role in cell and tissue structure and function in situ, where nanometric features, for example, the detail on single collagen fibrils, influence cell behaviour and resultant tissue formation. In vitro investigations demonstrate that nanotopography can be used to control cell reactions to a material surface, indicating its potential application in tissue engineering and implant fabrication. Developments in the catalyst, optical, medical and electronics industries have resulted in the production of nanopatterned surfaces using a variety of methods. The general protocols for nanomanufacturing require high resolution and low cost for fabricating devices. With respect to biological investigations, nanotopographies should occur across a large surface area (ensuring repeatability of experiments and patterning of implant surfaces), be reproducible (allowing for consistency in experiments), and preferably, accessible (limiting the requirement for specialist equipment). Colloidal lithography techniques fit these criteria, where nanoparticles can be utilized in combination with a functionalized substrate to produce in-plane nanotopographies. Subsequent lithographic processing of colloidal substrates utilizing, for example, reactive ion etching allows the production of modified colloidal-derived nanotopographies. In addition to two-dimensional in-plane nanofabrication, functionalized structures can be dip coated in colloidal sols, imparting nanotopographical cues to cells within a three-dimensional environment.
منابع مشابه
Cracking-assisted fabrication of nanoscale patterns for micro/nanotechnological applications.
Cracks are frequently observed in daily life, but they are rarely welcome and are considered as a material failure mode. Interestingly, cracks cause critical problems in various micro/nanofabrication processes such as colloidal assembly, thin film deposition, and even standard photolithography because they are hard to avoid or control. However, increasing attention has been given recently to co...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملBubble-Pen Lithography.
Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on subs...
متن کاملScalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography.
Localization of large electric fields in plasmonic nanostructures enables various processes such as single-molecule detection, higher harmonic light generation, and control of molecular fluorescence and absorption. High-throughput, simple nanofabrication techniques are essential for implementing plasmonic nanostructures with large electric fields for practical applications. In this article we d...
متن کاملAttempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts.
Control of the cells' nanoenvironment is likely to be important in the future of cell and tissue engineering. Microtopography has been shown to provide cues to cells that elicit a large range of cell responses, including control of adhesion, morphology, apoptosis and gene regulations. Now, researchers are focusing on nanotopography as techniques such as colloidal and electron beam lithography a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2007